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After a brief description of the Milne generalization of the Galilean invariance group 
for the space-time of Newtonian kinematics, it is shown how the generalized 
Eulerian dynamical equations for the motion of a multiconstituent perfect (non- 
conducting) fluid can be expressed in terms of interior products of current 4-vectors 
with exterior derivatives of the appropriate 4-momentum 1-forms (whose role is 
central in this approach) in a fully covariant standard form whose structure is 
identical in the Newtonian case to that of the corresponding equation for the case of 
(special or general) relativistic perfect fluid mechanics. In  addition to space-time 
covariance, this standard form exhibits chemical covariance in the sense that it is 
manifestly invariant under redefinition of the number densities of the independent 
conserved chemical constituents in terms of linear combinations of each other. It is 
shown how, in the strictly conservative case when no chemical reactions occur, this 
standard form, can be used (via the construction of suitably generalized Clebsch 
potentials) for setting up an Eulerian (fixed-point) variation principle in a form that 
is simultaneously valid for both Newtonian and relativistic cases. 

1. Introduction 
The purpose of this work is to show how the equations of motion of a non- 

conducting perfect fluid with an arbitrary number of independent (possibly charged) 
conserved constituents may be expressed in a very convenient standard form 
characterized by the following useful properties : 

(i) It manifests chemical covariance, meaning that it is unaffected by linear 
transformations of the constituent basis (in the sense described a t  the end of $2). 

(ii) It is also geometrically covariant, meaning that it is covariant under general 
(not necessarily linear) transformations of the space-time coordinates (being 
expressed entirely in terms of interior and exterior products and derivatives in the 
sense of Cartan). 

(iii) It is applicable not only to (special and general) relativistic fluid mechanics (as 
one would expect, in view of the preceding property) but also (less obviously) to 
ordinary Newtonian fluid mechanics. 

As a consequence of these properties, and particularly of the last one, this standard 
formulation can be used as a starting point for the derivation of a large number of 
general theorems in such a way that they apply automatically both to the Newtonian 
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and the relativistic cases. The present work has in fact been essentially motivated by 
the observation (by several workers, and most recently by Katz 1984 and Bekenstein 
1986: see also Bekenstein & Oron 1977) that the technical effort involved in 
derivation of the many known kinds of conservation law (see e.g. Schutz 1980; Katz 
& Lynden-Bell1982 ; Gaffet 1985) for sufficiently well-behaved (non-dissipative) fluid 
models within the context of Newtonian theory (including laws of conservation of 
‘circulation ’ (Kelvin 1910), ‘vorticity potential ’ (Ertel 1942), and ‘helicity ’ (Moffatt 
1969)), is actually greater - i.e. their derivations are technically more complicated - 
than for their fully relativistic analogues (as given for the quoted examples by 
Lichnerowicz 1967, Friedman 1978, and Carter 1979, respectively). 

The existence of this shared standard formulation makes it possible to simplify the 
derivation of many known results in Newtonian hydrodynamics - and should 
facilitate the discovery of new ones - by enabling one to carry over the convenient 
methods previously developed (using a covariant treatment) in a relativistic context. 
As an illustration we shall first show explicitly in $56 and 7 how the standard 
formulation leads directly to a corresponding very generally applicable Clebsch-type 
formulation and hence to a related Eulerian variation principle using the volume 
integral of the fluid pressure P. Finally, in $8, it will be shown how, when there are 
no more than two independent constituents, the standard form of the hydrodynamic 
equations may be converted into the particularly convenient (albeit no longer 
chemically covariant) canonical form as previously derived by Carter (1979) on the 
basis of the property that the individual fluid flow trajectories satisfy an ordinary 
Lagrangian variation principle in five dimensions, the extra dimension representing 
a canonical, not necessarily proper, time parametrization which must be introduced 
independently of the ordinary coordinate time in order to preserve general 
covariance. 

The apparent paradox of the comparative simplicity of the physically more 
general case of the relativistic theory as compared with the more specialized case of 
the traditional Newtonian theory applies not only to fluids but also more generally 
to solid media (see e.g. Carter 1980) and can be largely understood as resulting from 
the fact that the latter is an essentially singular limit of the former : the existence of 
a non-degenerate 4-metric makes it easier to provide a simple fully covariant 
treatment in the relativistic case. However a significant further simplification is 
obtainable for non-dissipative fluid models (as for the more widely known example 
of Maxwellian electromagnetism) from the fact that the system can be formulated in 
a way that is naturally adapted to treatment by the Cartan method based on the 
exterior calculus of differential forms : like the more specialized canonical formulation 
(whose systematic exploitation was described by Carter 1979) the appropriately 
adapted standard formulation to be presented here has the advantage of involving 
only exterior differentiation, requiring no explicit reference to covariant dif- 
ferentiation in the Riemannian (i.e. connection dependent) sense, nor to the 4- 
dimension pseudo-Riemannian metric tensor which of course ceases to exist in the 
Newtonian limit. It was this consideration that led us to hope that such a 
formulation would have the well-behaved Newtonian limit that we have successfully 
obtained in the manner described in $4. The main part of the present text is in fact 
presented in such a way that (although the mathematical inspiration is relativistic) 
no physical postulates beyond those of Newtonian theory are invoked explicitly. For 
readers interested in the (essentially more straightforward) case of (special or 
general) relativistic hydrodynamics in its own right, the relevant derivation of the 
standard formulation is given in Appendix A. 
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2. Characterization of the standard formulation 
In  any (Newtonian or relativistic) description of a non-conducting fluid, the basic 

independent variables may be taken to consist on the one hand of the components 
u p  say (p = 0 ,1 ,2 ,3 )  of the space-time tangent vector to the flow world lines, as 
normalized with respect to proper time, and on the other hand the proper number 
densities, n, say, where X is an index labelling the various independent constituents 
involved (which may include quantities such as entropy as well as material particles), 
so that the current vectors representing the corresponding constituent fluxes will be 
given by 

nP, = nxuP. (2.1) 

The creation, destruction or conservation of any such constituent will be governed 
by a four-dimensional divergence equation of the form 

where we use the symbol V to denote covariant differentiation (with respect to the 
ordinary flat space-time connection in Newtonian theory or the usual Riemannian 
connection in relativistic theory) and where rx is its numerical creation rate per unit 
volume. In order for the fluid to be perfect in the strict sense of having a reversible 
evolution, as will be required for the derivation of the potential formulation in $6, the 
variation principle in $7 ,  and the canonical formulation in the case discussed in $8,  
the relevant constituents must all be conserved, i.e. the corresponding rates rx  must 
all vanish. On the other hand everything given in the other sections, and in particular 
all the basic formulae quoted below in this introductory section, will be valid even 
in the presence of non-zero creation rates arising e.g. from chemical or (in the 
astrophysical applications with which the present authors are most familiar) from 
nuclear reactions. 

An essential ingredient of the present treatment will be the introduction for each 
constituent, as labelled by X ,  of a corresponding space-time convector field (a 1-form 
in the terminology of Cartan) with components x: say which will be interpretable as 
representing the 4-momentum per particle for the constituent X in question. This 4- 
momentum is dynamically conjugate to the corresponding current 4-vector nP, with 
respect to the pressure P of the fluid in the same way that the electromagnetic 4- 
potential A,, is conjugate to the electric current 4-vector j p :  a t  a given space-time 
position in a fixed gravitational background the infinitesimal variation in the 
pressure determined by the equation of state as a result of corresponding variations 
in the 4-momenta and electromagnetic 4-potential is expressible as 

where it is to be understood that the convention of summation over all values of an 
index that is repeated (in upper and lower positions) applies not only to the (lower- 
case Greek) space-time coordinate indices but also to the (capital Latin) chemical 
constituent indices, and where the total current 4-vector j p  is itself given in terms of 
a set of constants ex representing the electric charge (if any) per unit particle number 
for each corresponding constituent X by the expression 
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of the equations of motion is given by the expression 
In terms of the quantities thus introduced, what we refer to as the standard form 

nxup(V,nf-VV,nf) = 0, (2.5) 
in which the covariant differentiation operations, that we have indicated by the 
symbol V, are interchangeable with simple partial differentiation operations, which 
we shall indicate by the symbol a, as a result of the antisymmetrization within the 
brackets, whose contents effectively represent the exterior derivatives of the 4- 
momenta. A closely related alternative version of the equations of motion (2.5) 
expresses the evolution in terms of the concept of Lie differentiation with respect to 
the flow tangent 4-vector up, which we shall indicate by the symbol [uL?]. This 
alternative expression takes the form 

nx([uL?]n,X-aphX) = 0, (2.6) 

where we have introduced a set of scalar fields 

AX = upn;, 

that will be seen to be interpretable in a certain sense as representing individual 
particle Lagrangian functions for the corresponding constituents. 

The crucial step in the present work is the reduction of the usual Newtonian 
mechanical equations of motion of the fluid to the standard form (2.5). This is carried 
out in $4, after a brief introductory discussion of the notion of the Milne extension 
of the (more widely known but unnecessarily restricted) Galilean invariance group in 
$3. By comparison with the Newtonian case (which is complicated by the absence of 
a non-degenerate space-time metric) the reduction to standard form of the equations 
of motion of a relativistic fluid is technically a much more straightforward exercise, 
which we shall postpone to the Appendix in order not to interrupt the continuity of 
the presentation for any readers who may be interested only in the Newtonian case. 
(In so far as the relativistic case is concerned, the form (2.5) is an obvious 
generalization of the expressions whose utility was emphasized some time ago by 
Lichnerowicz (1967). The fact that  subsequent authors [e.g. Misner, Thorne & 
Wheeler 19731 have generally tended to ignore this approach is perhaps due in part 
to an unfortunate choice of nomenclature by Lichnerowin, who used the physically 
misleading term ‘current ’, and the corresponding symbol %, to denote what we have 
referred to as the 4-momentum and denoted by the symbol n. In  usual physical 
terminology the term current is appropriately applicable only to a contravariant 
vector field, or a t  a more fundamental level to the corresponding 3-form to  which it 
is related via the space-time 4-volume measure. In  so much as (2.3) shows that the 
1 -forms representing the 4-momenta are dynamically conjugate to genuine physical 
currents, i t  would evidently be more suitable to describe the momenta as co- 
currents. ) 

Provided no net charge is carried off from the fluid in the course of any reactions 

(2.8) that may occur, i.e. 

then it will follow from the results given below that there will be an analogous 
conservation law for the net 4-momentum, i.e. we shall have 

V n y  = 0, eXrx = 0, 

n x r x  P = 0. (2.9) 

The present approach is particularly effective for the purpose of obtaining rapid 
and obvious derivations (such as those demonstrated by Carter 1979) of results of 
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very general validity whose more widely known special cases are commonly obtained 
by inelegant or devious ad hoc methods. As a simple example, we present what may 
be described as a very general extension of the classical Bernoulli theorem, which 
will apply whenever the flow is invariant with respect to transport by some 
space-time 4-vector with components kf say, so that in particular the corresponding 
Lie derivative of the 4-momentum 1-form will be zero, i.e. 

[k9]7c,x = 0, (2.10) 

which (by the same Cartan formula that was used to go from (2.5) to (2.6)) is 
equivalent to the condition 

(V, x: - v, n,") k" = V,( k"n:), (2.11) 

where the scalars kUnf appearing on the right-hand side would be interpretable for 
each corresponding constituent as for example the effective energy per particle if 
kf were a generator of time transportation, or as angular momentum if it were an 
axial rotation generator. Under such conditions it can be seen immediately that the 
result of contracting (2.5) with k p  can be rewritten as 

n,ufV,(k"x:) = 0. (2.12) 

Provided (2.8) is satisfied we may use (2.9) with (2.2) to convert this into a simple flux 
conservation law (for energy or whatever it may be) of the form 

VP(k"I7"Uf) = 0, (2.13) 

where we have introduced the total 4-momentum density l-form as defined by 

'7, = nx7c,X. (2.14) 

The chemical covariance referred to a t  the beginning concerns redefinitions of the 
elementary constituents of the fluid in terms of fixed linear combinations of their 
number densities by transformations in which the set of number densities n, are 
replaced by a new set n& given by 

n> = Nf;n,, (2.15) 

where the numerical coefficients NZ are constants, which automatically ensures that 
the corresponding new currents, ng, will retain the same conservation properties as 
the original ones, or in other words, that  (2.2) is covariant under the transformation. 
The construction of the 4-momenta will be such that they transform contravariantly 
under the effect of (2.6), i.e. the 7c; will be replaced by a corresponding new set 7cLx 

given by 
7 ~ p X  = 7tiy N$ .  (2.16) 

We shall adopt the usual convention (analogous to that which is already implicitly 
understood to apply to the familiar lower-case Greek space-time coordinate indices) 
of using the upper or lower positions of the capital Latin indices to indicate 
respectively covariant or contravariant transformation properties under the effect of 
(2.15). Since the charges ex are obviously contravariant in this sense, the chemical 
invariance of the total electric current, as expressed by (2.4) is manifest. In  view of 
the constancy of the transformation coefficients, the chemical invariance of (2.3) and 
of the forms (2.5) and (2.6) is also apparent. (As a very simple example of the kind of 
constituent basis transformation to which one might wish to apply these 
considerations, suppose one has in mind a problem involving the transport of oxygen 
dissolved in water: as a first choice one might use a molecular basis for the 
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accounting, taking n, to be the number density of water in units of H,O and taking 
n, to be the number density of oxygen in units of 0,; if as a second choice one decided 
to change to book-keeping on an atomic basis, taking ni to be the number density of 
hydrogen atoms and ni to be the number density of oxygen atoms, then the 
corresponding chemical transformation matrix would be given by N i  = N i  = 2,  
N2 = 1,  N,2 = 0.) 

3. Newtonian kinematics and Milne transformations 
The space-time background of Newtonian mechanics is traditionally described in 

terms of a linear structure subject to the (ten-parameter) Galilean transformation 
group, but a more modern approach whose development is due principally to the 
work of Milne, McRea and Bonnor (Milne 1934; McCrea & Milne 1934; Bonnor 1957) 
is based on recognition of a much larger (infinite-dimensional) invariance group of 
nonlinear transformations whose significance does not seem to have been noticed 
before Einstein’s formulation of the ‘equivalence principle ’ in the early years of the 
present century. In  addition to the linear transformations of the Galilean group, this 
larger class of transformations, which we shall refer to as the Milne equivalence 
group, includes (as an infinite-dimensional invariant subgroup) the set of arbitrarily 
(i.e. in general nonlinearly) time-dependent space translations. The Milne group is 
thus intermediate between the Galilean group (which i t  contains as a non-invariant 
subgroup) and the full Einstein equivalence group of all diffeomorphisms of 
space-time (within which the Milne group is itself contained as a non-invariant 
subgroup). 

The space-time background of the Einstein, Milne, McRea, Bonnor version of 
Newtonian mechanics can be conveniently described within the conceptual 
framework of fibre-bundle theory (which has been made familiar to physicists by 
modern gauge field theories). The salient feature of Newtonian (as opposed to 
relativistic) space-time, from both the traditional (Galilean) and the modern (Milne) 
point of view, is the existence of a preferred (proper) time coordinate field, t say 
(defined modulo an arbitrary additive constant) which specifies a foliation by (three- 
dimensional) constant-time slices each of which is endowed with a flat Euclidean 
geometric structure. The distinction between the traditional and the modern version 
concerns the relationship between neighbouring slices. The modern version can be 
succinctly described by the statement that the space-time as a whole has the 
structure of a fibre-bundle over a one-dimensional base manifold, parametrized by 
the time, t ,  with the Euclidean constant-time slices as fibres, subject to the gauge 
action of the (3-parameter) group of Euclidean translations. Provided one also 
requires that the one-dimensional time-base manifold be complete, it  is evident that 
the structure set up in this way will be unique and furthermore that it will be 
invariant under the global action of the direct Croduct of the l-parameter group of 
time translations with the full 6-parameter Euclidean group (of which the locally 
acting 3-parameter gauge group is an invariant subgroup). 

For any given choice of gauge (i.e. of local direct product structure) in the bundle 
that has just been described, a choice of space coordinates, xi say (i = 1,2,3),  in one 
of the fibres (i.e. at some instant) will determine corresponding coordinate values 
throughout the gauge patch (i.e. over the whole range of time under consideration). 
If the coordinates were originally chosen to be linear (with respect to the flat 
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xi --f xi + z i ,  

7 

Euclidean space-metric structure) then the effect of a bundle gauge transformation 
will be expressible imply by 

where the zi are arbitrary differentiable functions depending only on the base 
coordinate, t .  

In the traditional Galilean approach it is supposed that there exists a preferred 
second-order connection, i.e. a connection not on the primary space-time bundle 
itself but on the associated bundle of section gradients, i.e. 3-velocities (since a 
bundle section is interpretable as the trajectory of a single particle in space as a 
function of time) with components given by 

(3.1) 

vi = doxi, do d/dt. (3.2) 

(The existence of a preferred second-order connection is traditionally expressed by 
the statement that ‘velocity is relative but acceleration is absolute ’.) Since the time- 
base manifold is one-dimensional, such a connection is automatically integrable and 
thus determines a preferred direct product structure on the associated velocity 
bundle. This in turn determines a corresponding family of preferred (inertial) gauges 
for the primary space-time bundle. This set of preferred space-time bundle gauges, 
and the underlying (inertial) connection on the associated velocity bundle will be 
preserved by a finite (Galilean) subgroup distinguished within the infinite group of 
all local gauge transformations by the restriction that the time dependence of the 
zi in (3.1) be linear. 

In  the Milne, McRea, Bonnor approach it is recognized that in the presence of 
gravitational fields (and in the absence of cosmologically implausible asymptotic 
boundary conditions) ordinary Newtonian mechanical theory does not actually 
contain any physical prescription (in any case not a t  a local level) for recognizing 
the preferred inertial gauges whose existence is traditionally postulated. (When the 
theory is extended to include Clerk Maxwell’s electromagnetic field equations the 
physics does indeed specify a locally well-defined connection, but this Maxwellian 
(ether) connection is of ordinary first-order type, and as such not only breaks the full 
space-time bundle invariance, but even destroys the Galilean invariance.) This does 
not mean that it is impossible to define the absolute acceleration, meaning a Milne- 
gauge covariant velocity derivative, because the gravitational field, with components 
gi say, is postulated to vary according to the rule 

gi -+ gi + (do)2zi, (3.3) 
under the effect of the Milne gauge transformation law (3.1), thereby making it 
possible to construct a corresponding covariant derivative : 

D , V ~ + D ~ V ~ ,  D0vi dovi-gi. (3.4) 
In the trivial case when it is spacially uniform (ie.  independent of the Cartesian space 
coordinates xi) a field gi satisfying (3.3) will be interpretable as the gauge form of an 
effectively preferred connection which will then indeed specify a corresponding 
subset of inertial gauges within the general class of Milne gauges. However in general, 
when a non-trivial, i.e. spatially variable gravitational field is present, there is no 
(local) physical prescription for decomposing gi into a spatially uniform part, 
interpretable as an inertial connection, and a spatially variable residual part, 
interpretable as the truly gravitational field. 

Apart from its gauge transformation behaviour, our only other requirement on the 
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Newtonian gravitational field will be that the corresponding spatially covariant field 
with components given by gi should be spatially irrotational, which means that i t  is 
derivable from a scalar potential, 

gi =-vi@, (3.5) 

where index raising and lowering and covariant differentiation are defined with 
respect to the flat Euclidean structure on the fibres. (If the linear coordinates, to 
which the validity of (3.1) and (3.3) is limited, are actually taken to be Cartesian, 
then gi and gi may be identified.) The transformation law (3.3) implies a corresponding 
law of the form 

for the effect of the Milne-gauge transformation (3.1) on the Newtonian potential q5. 
In  the present work we shall be concerned only with the effect of background 

gravitational and electromagnetic fields on the material (fluid) system under 
consideration, so that the source equations for the active effect of the matter on these 
fields will not play any role. However, before leaving the topic of the Milne-gauge 
dependence of the gravitational field we mention the obvious invariance of second 
space derivatives of @, and in particular of the Laplacian that the Poissonian source 
equation sets proportional to the material mass density which of course is also 
unaffected by Milne transformations. In  so far as electromagnetic effects are 
concerned the status of the source equations is less satisfactory, because the 
incorporation of the Maxwellian source equations into a Newtonian background 
entails the violation not only of Milne covariance but even of Galilean covariance 
(whence the original theoretical motivation for developing relativistic theory). 
Nevertheless for the present purpose, in which the source equations play no role, 
there is no obstacle to including the effects of an electromagnetic background field in 
a manner entirely consistent with full Milne (and hence, a fortiori, Galilean) 
covariance. All that we need to assume is that the electric field, with (fibre) space 
components E i ,  and the magnetic field, with space components Bi, should be 
derivable from a space-covector potential field with components Ai and a space- 
scalar potential field A ,  according to the usual rule 

@+ @-Xi(dO)’zi, (3.6) 

(3.7) 

where eajk denotes the antisymmetric Euclidean measure tenor on the fibres and a, 
denotes partial differentiation with respect to the base coordinate t in the fibre (i.e. 
space) coordinate gauge under consideration. The Milne invariance requirement for 
the Lorentz force per unit charge Ei + cijk dBk (which must be proportional to the 
absolute acceleration (3.4) for a particle subject to no other forces) under the effect 
of (3.1) leads to the transformation rule 

A, + Ai, Ao+ A,-  Aidozi, 

for the components A ,  ( p  = 0 , 1 , 2 , 3 , 4 )  of what we shall henceforth interpret as a 
4-potential, using a four-dimensional coordinate index notation based on the 
identification 

The rule (3.8) can be recognized as being just the ordinary transformation property 
for the components of a four-dimensional covector under the coordinate trans- 
formation given by (3.1),  which means that the 4-potential can be regarded as a 

xo = t. (3.9) 
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Milne-gauge independent 1 -form on space-time. In  an analogous manner the 4- 
velocity with components up defined by 

ui = vi, uo = 1, (3.10) 

can be regarded as a Milne-gauge independent (contravariant) space-time vector, 
since it transforms under (3.1) according to the rule 

ui + ui + uodo zi ,  uo + uo. (3.11) 

This 4-vector is just the proper time derivative tangent to the space-time trajectories, 
as introduced in the previous section (equation (2.1)).  Since the Newtonian 
space-time connection, and more particularly the space-time measure (which is all 
that is needed to define the 4-divergence) given by the product of the time-base 
measure and the Euclidean space measure in the fibres, are well defined independently 
of any choice of Milne gauge, the explicit Newtonian form of the particle number 
current source equations (2.2),  namely 

aonx+Vi(nxvi)  = r x ,  (3.12) 

will be also well defined independently of gauge, the left-hand side as a whole being 
Milne invariant even though the separate terms are not. 

4. Conversion of Newtonian hydrodynamic equations to standard form 
After these kinematical preliminaries, we now come to consider the basic Eulerian 

dynamical equation of motion of the fluid, whereby the absolute acceleration of the 
particle trajectories, as defined by (3.4), which for a continuum is given by 

D , V ~  = a o v i + d y v i + v q  (4.1) 

is set proportional to the sum of the electromagnetic and pressure gradient forces, 

(4.2) 
i.e. 

where each side taken as a whole is Milne invariant (even though the individual terms 
inside the brackets on the left-hand side are not) and the proportionality factor pm 

(4.3) 
is the mass density as given by 

where the parameters mx (representing the mass, if any, per unit particle number), 
like their analogues the charge parameters e x ,  are chemically contravariant 
constants. More explicitly, we therefore have 

nx(a0p$ +dV,p f  +V,mX@) +n, e X ( a 0 A i - ~ A O + 2 d ~ , ~ , , )  = -vi P ,  (4.4) 

in which each separate term is chemically (but not Milne) invariant, where square 
brackets around indices denote the antisymmetric average over permutations, and 
where for each constituent we have introduced the dynamical3-momentum per unit 
particle number density as defined by 

pm Do ~i -pe(Ei + eijk dB”) = - % P, 

p m  = nxmX, 

p$ = mXvi, (4.5) 

(which will of course be zero for any constituent, such as the entropy, that is massless 
in Newtonian theory). 

In order for the system of equations (3.12) and (4.2) to determine the time 
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evolution of the system, it is of course necessary to have a well-defined equation of 
state specifying the pressure P as a function of the densities n,. In practice it is 
usually most convenient to start from a basic equation of state giving the (internal) 
energy density, E say, in terms of the densities n,, and then to use the chemical 
potentials specified by the partial variation formula 

& = xxSn, 

to calculate the pressure from the formula 

P = n,XX--E, (4.7) 

that results from relating the energy density to the work of compression of the 
pressure, which gives the handy variation formula 

6P = n, 6x". (4.8) 
Since (provided the entropy is taken into account as well as the material constituents) 
the chemical, nuclear or other purely internal interactions among the constituents 
can give no net contribution to the total energy density, the rates appearing in (3.12) 
must satisfy the restriction 

in addition, of course, to the Newtonian mass conservation requirement, 

r x X X  = 0, (4.9) 

V,(p, u") = 0, rx mx = 0. (4.10) 

Before continuing we remark that, just as the foregoing dynamical system is 
unaffected not only by the Milne gauge transformations but also by the familiar class 
of potential gauge transformations 

@ + @ + C ,  (4.11) 

and Ao+ A,+a, $, A , + A , +  Vi $, (4.12) 

where C is an arbitrary constant and $ an arbitrary variable function over 
space-time, so also (in Newtonian, unlike relativistic theory) the chemical potentials 
are defined only modulo analogous transformations of the form 

xx --f xx + cx , (4.13) 

where the Cx are constants representing arbitrary changes in the origin of 
measurement of the energy per particle of the corresponding distinct constituents. 
The transformations (4.13) amount to a recalibration 

E + E + n, Cx, (4.14) 

in the definition of the total internal energy density, but the dynamically relevant 
pressure as given by (4.7), and its variation as given by (4.8), will of course remain 
unaffected by such adjustments. 

For each separate constituent, we now introduce a quantity bx that is effectively 
its total (internal plus external) energy per particle (or more precisely energy per unit 
number density in cases such as the entropy for which the concept of particle may 
not be strictly appropriate) by the definition 

bx = ~ X + m X @ - e x A o + ~ p f .  (4.15) 

(In the particular case of the entropy, the only term effectively present would be its 
chemical potential, namely the thermodynamic temperature, 0 say.) This enables us 
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to express the chemical potential variations appearing in the pressure variation 
formula (4.8) in the form 

S x x  = S&x + eXGAo - vi8p$ - r n X G @ .  (4.16) 

Using this to eliminate the pressure from the dynamic equation (4.4) gives 

~ ( a ,  n$ + 2vi a,i “xi ]  +a, &x) = 0, (4.17) 

whose contraction with the 3-velocity components vi reduces simply to 

nxd(aonf+ai&‘x) = 0, (4.18) 

where the canonical 3-momentum components are defined in terms of the ordinary 
3-momentum components by a relation of the usual form 

n$ = p f + e X A , ,  (4.19) 

and where the antisymmetrization has permitted us to use partial coordinate 
derivatives, as indicated by a,, in place of the covariant derivatives, that were 
indicated by V,. 

To complete the specification of the components n: of the required $-momentum 
covector, we now define its time component simply by 

?cf = -bX.  (4.20) 

It then follows that the contraction AX (as introduced in (2.6) by the definition (2.7)) 
of the 4-momentum with the 4-velocity will be related to the effective energy per 
particle gx by a formula of the ordinary Legendre type for the relation between an 
ordinary Lagrangian and the corresponding Hamiltonian energy function, i.e. 

AX = v,nf-&‘X. (4.21) 

It has already been observed that the 4-velocity vector and the electromagnetic 
4-potential l-form are Milne invariant in the sense that the combined effect of the 
Milne transformation (3.1) (leading to (3.11) and (3.8) respectively) and an ordinary 
four-dimensional coordinate change back to the original reference system leaves 

(4.22) them unchanged : 
u p  + u p ,  

and A, + A,. (4.23) 

However the 4-momentum l-forms (as defined by (4.19) and (4.20)) have a non- 
trivial Milne gauge dependence, since the effect of such a Milne-plus-coordinate 
transformation is to induce additive adjustments expressible (in flat space 

(4.24) 
coordinates) as 

Although the 4-momenta are thus affected by general Milne transformations and 
even by Galilean transformations (i.e. those for which do za is itself independent of t ) ,  
as well as being effected by the gauge transformations (4.11), (4.12), and (4.13) of the 
gravitational, electromagnetic and chemical potentials, it is to be noticed that the 
relevant additive correction terms are all exact (i.e. pure gradient) l-forms which 
means that the corresponding generalized vorticity 2-forms defined by their exterior 
derivatives will be invariant, i.e. 

a[, nx,, + a[, nXn, (4.25) 

np” --f np” + li.(mxxidd, 2,) +&nx(do z ~ )  (do zt) apt.  

with respect to all these kinds of (Milne and other) gauge transformations. 
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The standard form (2.5) of the equations of motion is equivalent to the statement 
that the sum of the contractions of these vorticity 2-forms with the current 4-vectors 
of the corresponding constituents should vanish, i.e. 

npX arp nxg1 = 0. (4.26) 

To verify this basic result, all that remains is to observe (bearing in mind the 
definition (3.10) of the 4-velocity components up) that (4.17) and (4.18) respectively 
are precisely the space and the time components of the original version (2.5) of the 
required result. 

To complete our demonstration, for the Newtonian case, of the formulae presented 
in $2, it suffices to remark that the result of substituting (4.16) in the pressure 
variation formula (4.8) can be expressed in four-dimensional notation as 

6P = - n& 8~pX +j”6Ap - pS@, (4.27) 

which reduces directly to the previously stated expression (2.3) if the gravitational 
field @ is held fixed. (It is only when the final gravitational adjustment term is 
present that this Newtonian form differs from the corresponding general relativistic 
pressure variation formula as given in the Appendix.) 

5. Formulation in terms of a chemically preferred reference current 
Having shown how the standard form (2.5) of the fluid equation of motion and the 

corresponding general form (2.3) of the pressure variation formula can be derived in 
a special case (i.e. the Newtonian limit) we shall now proceed immediately to consider 
some of the direct consequences that can be drawn quite generally just from these 
two equations and the associated divergence laws (2.2) together with the elementary 
definitions (2.1) and (2.4). (The derivation of these equations in the technically 
simpler and physically less specialized context of special and general relativistic 
theory will be postponed until the Appendix.) 

Unlike the work of the preceding sections (and the Appendix) the results of QQ6, 7, 
and 8 will be valid only for the case of a fluid that is perfect in the strict sense that 
all the dynamically relevant constituents are conserved, i.e. the corresponding 
creation rates r x ,  as they appear in the divergence conditions (2.2), are all zero, so 
that the system of equations of motion is time-reversible. 

Before imposing this condition however, we remark more generally that even if 
only some, but not all linear combinations of the constituent number of currents is 
conserved, it will often be convenient to choose one of these conserved currents as 
a basic reference for accounting purposes. If the chosen reference number density, 
n say, is given by 

n = N X n x  (5.1) 

for some set of constant coefficients N X ,  then the desired conservation property, 

Vpnp = 0,  (5.2) 

n p  = nup, (5.3) 

N X r ,  = 0. (5.4) 

as expressed using the obvious notation 

implies the requirement that the creation rates should satisfy the restriction 
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In many physical contexts an appropriate choice for such a reference density will be 
the baryon number density. (In the example presented a t  the end of $2, the baryon 
number density would be obtainable from the original molecular frame by taking 
N1 = 18, N 2  = 32, which is equivalent to taking the atomic frame components 
N" = 1, N 2  = 16.) 

In  so far as relativistic theory is concerned there is no loss of generality in choosing 
to use any such set of coefficients N X  for the purpose of associating corresponding 
mass constants mx with the constituents by a proportionality relation of the form 

mx = mNx, (5.5) 

where the proportionality factor m is a constant interpretable as a mean mass per 
reference particle, so that the corresponding 'rest' mass density will be given by 

p m  = mn. (5 .6)  

It will also be always possible, and for many purposes most convenient, to impose the 
requirements (5.5) and (5.6) in the case of Newtonian theory, but in this case it would 
effectively entail a restriction on the choice of the N X ,  since (unlike the more 
generally applicable relativistic theory, for which the constants mx may be chosen 
arbitrarily as far as the general mathematical formalism presented in the Appendix 
is concerned) the structure of the (physically less accurately realistic) Newtonian 
theory is such that the constituent particle masses and the corresponding mass 
density (as originally defined by (4.3)) will be unambiguously determined at the 
outset. 

With respect to any such reference number density n (regardless of whether, in the 
Newtonian case, the restriction (5.5) has been made) the composition of the fluid will 
be describable in terms of the set of scalar constituent number density ratios 

(5.7) 

for whose time evolution the divergence conditions (2.2) will give the simple 

(5 .8)  

NXux = 1,  (5.9) 

formulae upapux = -, TX 
n 

which (by (5.3)) will obviously preserve the necessary normalization condition 

restricting the independence of the ratios ux. These ratios can be used to introduce 
what is interpretable as a mean 4-momentum or equivalently as the total 4- 
momentum per unit reference particle number, by the obvious definition 

n, = uxn,x. (5.10) 

In terms of such a mean 4-momentum l-form, the generalized Bernoulli theorem 
(2.13) reduces to the form of a scalar conservation law, 

UPi3p(k%b) = 0, (5.11) 

where the conserved scalar Icon, is interpretable, depending on the geometric nature 
of the symmetry generator h@, as representing the mean energy, angular momentum, 
or whatever it may be, per particle. 
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6. Generalized Clebsch formulation 

are zero 

which means that the choice of the constituent reference vector with components 
N X  specifying the choice of a current satisfying (5.4) may be taken arbitrarily, so 
that its introduction as a formally preferred reference vector in the constituent 
vector space will not entail any real loss of chemical covariance. Under these 
circumstances we can rewrite the basic dynamic equation of motion (2 .5)  in the 

(6.2) 
simple alternative form 

where the coefficients AX of the number ratio gradients on the right-hand side are the 
momentum-velocity contractions given by (2.7), whose interpretation as constituent 
particle Lagrangians is motivated by (4.21). 

Subject to the imposition of (5.5) (which, as emphasized above, is merely a 
definition in the relativistic case, although a real restriction on the chemical 
covariance of the choice of n in the Newtonian case) one may regroup the terms 
appearing on the right-hand side of (6.2) so as to obtain the alternative expression 

In  this and the remaining $87 and 8 we shall suppose that all the creation rates 

rx  = 0, (6.1) 

2upaLp 7~,, = -mP vx, 

wherein only the first two terms on the right-hand side will remain when 
electromagnetic effects are absent. 

The modified strictly conservative version (6.3) of the dynamic equation of motion 
of the fluid can be used as the starting point of a generalized Clebsch-type 
formulation that includes as restricted special cases both the Newtonian formulation 
of Seliger & Whitham (1968) and the relativistic formulation of Schmidt (1970) and 
Schutz (1970). The first step is to introduce a (chemically contravariant) set of 
potentials 6” that may be interpreted as Jacobian action variables along the world 
lines for the corresponding kinds of particular constituent according to the 
prescription 

(These action variables generalize the quantity originally introduced by van Danzig 
(1939) under the name of ‘thermasy’ for a special case in which there was only one 
constituent - namely the entropy - that was relevant in the sense of its density being 
independent of that of the reference particles.) 

In  terms of these fields q5x (which introduce a new kind of gauge dependence in so 
much as their precise specification is dependent on the choice of a set of independently 
arbitrary hypersurfaces as starting positions for the measurement of the corre- 
sponding actions along the flow lines) one can define a modification of the 4- 
momentum l-form, with components given by 

u p  ap 4x = AX. (6.4) 

Kp = np - vx ap $x, (6.5) 

UPKp = 0,  (6.6) 

(6.7) 

which is such that the flow 4-vector has vanishing contraction not only with the 
l-form itself, i.e. 

but also with its exterior derivative, i.e. 

Up arp K,, = 0. 
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As was emphasized in the previously cited discussion of Carter (1979), these are the 
necessary and sufficient conditions for the form to be strongly conserved by the flow 
in the sense of having vanishing Lie derivative with respect to any flow tangent 
vector field, uup (where the time rescaling factor CT is an arbitrarily variable scalar 
field over space-time), i.e. 

K, = 0. 

This means that in any coordinate system comoving with the fluid (no matter how 
the time parametrization is adjusted) the components K~ of this l-form will have 
time-independent values. 

It follows from any two of (6.6), (6.7), (6.8) that this l-form is the inverse 
projection of a corresponding 1 -form on the three-dimensional quotient manifold of 
space-time by the congruence of flow trajectories. It follows that as in the historical 
three-dimensional case considered by Clebsch, one can apply the theorem of Pfaff (see 
e.g. Schutz 1970) to the effect that this three-dimensional l-form must be (locally) 
the sum of the gradient of a potential y ,  say, and of another term proportional to the 
gradient of another potential designat'ed as p. This in turn implies that K, can be 
expressed as a sum of the same form in four dimensions, where y ,  p, and the 
proportionality factor, 01 say, are all constant along the flow lines. In  this particular 
application of Pfaff's theorem the first potential, y ,  can be seen to be redundant, 
because without loss of generality it can be cancelled out by using the freedom to 
make gauge transformations 

while still preserving the defining conditions (6.4), where the yx are any scalar fields 

(6.10) 
satisfying the condition, 

of constancy along the flow lines. We thus conclude that, while retaining the freedom 
to make independent transformations of the form (6.9) to all but one of the action 
potentials $", one will be able to adjust the last one in such a way that the conserved 
1-form K, will be expressible in the form 

#x --f 9" -YX, (6.9) 

u p  a, yx = 0, 

with 

(6.11) 

(6.12) 

which have the same form as the number ratio conservation laws 

u p a p v x  = 0, (6.13) 

obtained from (5.8) when (6.1) holds. Returning via (6.5) to the original momentum 
l-form, (6.11) gives a Clebsch-type expression of the very simple but quite generally 
valid form 

x, = a a , p + v X a p # X .  (6.14) 

Working backwards, one can verify straightforwardly step by step that in 
conjunction with (6.13) the original dynamic equation of motion (6.2) can conversely 
be recovered from, and is therefore equivalent to, the evolution equations (6.4) and 
(6.12) together with the relation (6.14). 

The required generalized Clebsch formulation therefore consists of just the four 
equations (6.4), (6.12), (6.13), (6.14), together with the conservation law (5.2) for the 
reference current (5.3) which one needs in any case (bearing in mind that only three 
of the four components of the dynamic equation (6.2) are algebraically independent), 
supplemented of course by the purely algebraic equations (equation of state and 
definition of momentum in terms of velocity) that relate the current to the 4- 
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momentum l-form (but which cannot be made more explicit a t  this point, since any 
more detailed specification would necessitate distinguishing Newtonian from 
relativistic theory, contrary to the express purpose of the present section). 

The potential gradient expression (6.14) for the 4-momentum can be rewritten in 
a form that more directly generalizes the traditional version of the Clebsch 
formulation (Schutz 1970) by introducing the mean action potential per reference 

(6.15) 
particle, as defined by $ = V X $ X  

which can be seen from (6.4) and (6.13) to satisfy 

upa,,p = A ,  (6.16) 

where h = 1 J X F  (6.17) 

defines what is interpretable as a mean Lagrangian in view of the alternative 

(6.18) 
expression 

Substitution of (6.15) in (6.14) gives the alternative expression 

h = u p  7cp. 

7 ~ ,  = a,,p-pzrap v,+aapp. (6.19) 

When working with this traditional version (in which (p is the historic descendant of 
the potential originally introduced by Clebsch himself) one does not need to postulate 
an independent additional evolution equation for 4 because (6.16) can be seen from 
(6.18) to be a direct consequence of (6.12), (6.13) and of the new relation (6.19) which 
replaces the basic equation (6.18) of our first version of the Clebsch formulation as 
summarized in the preceding paragraph. 

7. Standard version of potential formulation and pressure variation 
principle 

Although the customary approaches to any Clebsch-type potential gradient 
formulation (and in particular the very definition of the mean potential 4 appearing 
in the expression (6.19) that generalizes the traditional Clebsch-type formulae) 
depend on the use of a particular chosen number density of the form (5.1) as a 
reference, there is no difficulty in obtaining a closely related potential gradient 
formulation that is chemically covariant in the strong sense, meaning that no 
particular chemical reference vector is involved. 

One way of obtaining this chemically covariant version, which we shall refer to as 
the standard potential formulation (since it bears the same relationship to our 
standard dynamic equation (4.25) as does the preceding version (6.19) to the 
reference based dynamic equation (6.2)) is simply to multiply out the reference 
number density n from our earlier Clebsch-type expression (6.14). What we obtain is 
a formula for the total 4-momentum density l-form, H,,, as defined by (2.14), which 
is manifestly a chemical invariant. The resulting standard potential formula may be 

(7.1) 
expressed concisely as 

where (as in the case of small case space indices) the change from Latin to Greek 
capital indices denotes that an extra dimension has been added to the vector space 
of chemical constituents, so that for example if we take X ranging from 0 to N say 
then we can take Z ranging from - 1 to N .  The extra number density, which in this 
case will be denoted by n-, may be accounted for as the product na of the scalar fields 

Up = n,a, (pz, 
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n and a introduced in the preceding section, but one does not need to know this 
antecedence in order to proceed: all that matters is that it should be conserved like 
the other (physical) number densities so that for all values of Z we have 

V f ( n Z d )  = 0. (7.2) 
We may similarly extend the set of equations for the evolution of the action 
potentials to 

upap+= = A=, (7.3) 

where, since the extra potential has as its antecedent the 
we must set the corresponding ‘extra Lagrangian’ equal to zero, i.e. 

of the proceeding section, 

A-1 = 0 (7.4) 

with the indexation system proposed above. (As a specific example, if we were 
considering a Newtonian system in which the index 0 was chosen to represent the 
entropy, while the other values were taken to indicate N different kinds of material 
particle constituents, then the zeroth Lagrangian field would just be the negative 
of the temperature, i.e. ho = -0, while the others would have the general form, 
AX = +xvivt -xx + eX(Ao + viAi) - mX@. In  the relativistic case the general form will 
have the simpler expression given a t  the end of the Appendix.) 

In  this standard formulation the fluid system is fully described by the evolution 
equations (7.2) and (7.3) and by our potential formula (7.1) (considered as defining 
the total momentum density as a function of the potential gradients) together with 
the purely algebraic equations (7.4) and (2.7) (for the source terms in (7.3)) subject 
of course to specification of the equation of state and to the specification of the 
relation between 4-momentum and velocity, which depends on whether the system 
is Newtonian or relativistic. 

One of the traditional motivations for setting up a Clebsch-type formulation is in 
order to be able to obtain an ordinary fixed space-time position (Eulerian) field- 
variation principle for the differential equations of the system, which, as has been 
shown by Schutz &, Sorkin (1977), is not possible if one restricts oneself to the 
ordinary physical (in physics the word ‘physical ’ usually means independent of some 
pertinent gauge dependence) variables, nPx without allowing oneself the use of the 
extra current, nC1 and the potentials +=. Such a procedure can be carried through in 
the very general (indifferently Newtonian or relativistic) context under consideration 
here by using the fact that the dependence of the pressure, on which such variation 
principles are based, on the variations of the 4-momenta can always be expressed in 
the form 

(7.5) 

where the last term, 6,  P is zero if the gravitational field is held fixed, which will be 
supposed to be the case as far as the present section is concerned. This last term is 
the only one whose explicit form would depend on whether one is using Newtonian 
theory (in which case it can be read out from (4.27)) or relativistic theory (in which 
case it can be read out from the analogous formula (A 33) in the Appendix). For the 
purpose of the present section we shall also be able to ignore the second term, since 
we are not concerned with the source equations for the electromagnetic field whose 
variation may therefore be set equal to zero. 

6P = - n, u%cf +jpGA, + 6,  P ,  

When the last two external field variation terms vanish, i.e. 

6A, = 0 ,  6,  P = 0, 
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one is left with a pressure variation contribution which can be rewritten in terms of 
the chemically invariant total 4-momentum density as 

SP = hXGn, - U ~ S I I , ,  . (7.7) 

If we now consider the potentials and densities of the potential formulation set up 
above as the independent variables, then we may use (7.1) directly to evaluate the 
first term in (7.7) so as to obtain 

&p = (Az - u p  ap qP) Sn, + V, (n, U P )  Sq5, - V,( nZ UPS$"). (7.8) 

When this is substituted into a local variation of the space-time 4-volume integral 
of the pressure 

I = P ~ ( ~ ) V ,  (7.9) s 
then the divergence term goes out as usual by Green's theorem, leaving 

SI = { ( hz - u p  3, q5') Sn, + V p  (n, u p )  Sq5"} d(4) V, (7.10) 

The requirement that  this should vanish for arbitrary variations of the n, (including 
the unphysical one, n.-l), and of all the q5', leads immediately to the basic evolution 
equations (7.2) and (7.3) of the system. 

(It is a straightforward exercise to translate this general pressure variation 
principle back into the more traditional reference density based form, in which the 
quantities to be varied are taken to be the ratios v, and the potentials 01, p, of the 
previous section, together with the same action potential q5, as in the present 
standard version (7.10). Since the v,  are restricted by (5.9) there will be one less 
independent equation for the evolution of the q5,, but the equation that is apparently 
lost this way is in any case not independent, being recoverable in the form (6.16) as 
an identity resulting automatically from (6.12) and (6.14).) 

i 

8. Derivation of the canonical form from the standard form 
In order to be able to convert the equations of motion from the general standard 

form obtained in the preceding work to the more specialized canonical form whose 
particularly convenient implications have been described elsewhere (Carter 1979) we 
must restrict ourselves to the situation in which not more than two of the 
constituents are independent, so that all the internal functions will be expressible in 
terms of just two number densities (which in typical applications might correspond 
to baryons and entropy or to ions and electrons), let us say n[,, and n[!,. Thus the 
number density n, for the Xth general constituent will be determined by an 
expression of the form n, = N$l n[,] +N$l n,, 

for some set of fixed coefficients N $ ] ,  N g ] .  There will be no further loss of generality 
in choosing nLOl to be the reference number density n as introduced in $5 ,  which 
amounts to setting the first of the corresponding constituent number density 

(8.1) 

ratios 

equal to unity, i.e. v[ol = 1. 
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This means that for the Xth general constituent the corresponding number density 
ratio will be given in terms of a single independent variable, namely q1,, by the 
inhomogeneous linear expression 

vx = N y  + N y  V[,] ,  (8.4) 

so that its gradient will be given simply by 

a , V X  = ~ ~ ~ a , v ~ , ~ .  

Hence in terms of the correspondingly transformed values 

(8.5) 

At01 = AX"01, X At11 = AX"11 X7 (8.6) 

of the constituent Lagrangian scalar fields as defined by (2.7), we can carry out the 
sum-over-constituents in the chemically covariant expression (2.6) of the equation of 
motion so as to  obtain the (reference combination dependent) form 

[up] X, = a, A - PI a, VL1, (8.7) 

where n, and A are respectively the total 4-momentum and 'Lagrangian function' 
per reference particle, as defined by (5.10) and (6.17) or (6.18). The analogous 
evaluation of the sum-over-constituents in the standard form (2.5) itself leads to the 
even simpler alternative expression 

(8.8) 2up arp X,] = - A[ l ]  a, VL1]. 

To obtain the desired canonical form of the equations of motion, it now suffices to 
rescale the flow 4-vector suitably, replacing u p  by 

VP = Vufi, (8.9) 

where the (locally variable) time dilatation factor V is chosen to  be given by 

V = - l/h"l. (8.10) 

(In the particularly simple case for which the independent constituents are just 
baryon number and entropy, V would thus be just the inverse of the corresponding 
local temperature, 0.) 

In  terms of the correspondingly rescaled reference particle Lagrangian scalar 
field 

L = Vh[Ol, (8.11) 

and the associated Hamiltonian scalar field 

H = -v[iIj 

as defined in accordance with the Legendre relation 

(8.12) 

L+H = v4c,, (8.13) 

the system of equations of motion (8.7) is convertible into Lagrangian form (Carter 
1979) as 

[ V Y ]  7T, = a, L, (8.14) 

while the required canonical form (i.e. the corresponding Hamiltonian version of the 
system) is obtained from (8.8) as 
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The specially simple uniformly canonical form, as characterized by the further 
restriction that the term on the right-hand side should be absent from the basic 
general canonical form (8.15), can be seen to occur in the barytropic case in which not 
two but only a single one of the constituents is effectively independent so that vcl1 has 
a uniform value throughout the fluid. 

Appendix. Derivation of the standard form in the relativistic case 
So long as one is not concerned with the gravitational source equations it is 

actually simpler to formulate the theory for the (special or general) relativistic case 
in which the kinematic space-time background is described straightforwardly by an 
ordinary (non-degenerate, and therefore usable for raising and lowering of indices) 
pseudo-Riemannian metric, 

than for the Newtonian case whose description requires the use of the somewhat 
subtler concept of the Milne bundle structure, as introduced in 93 (or of some other 
equivalent, and no less elaborate, alternative mathematical description) in which the 
metric (A 1) has degenerated into a purely contravariant (usable only for raising but 
not lowering of indices) symmetric tensor components yf" having as a null 
eigenvector the separate time-gradient 1-form with components aP t .  Natural 
analogues of these degenerate Newtonian residual parts of the space-time metric are 
determined in the presence of a fluid by the corresponding local rest frame. The (no 
longer closed) analogue of the (closed) Newtonian time metric form given (in the 
notation of $3) by apt will have components obtainable in the form C - ~ U ~  from the 
proper 4-velocity, with components u p ,  via an ordinary index lowering operation, 

ds2 = g,,dx"dx", (A 1) 

(in which we have explicitly included a dimensional parameter, c ,  representing the 
speed of light, which may be considered to tend to 00 in the degenerate Newtonian 
limit, but which for other purposes may be set equal to one by choice of units). Like 
their Newtonian analogue, c2ap t ,  the components up will satisfy a null eigenvalue 
equation of the form 

(A 3) yP"u, = 0, 

where, in the relativistic case, the degenerate (positive indefinite) tensor with 
components yf' is defined by the metric decomposition 

gP" = yP~-c-2uPu", (A 4) 

which of course embodies the proper-time normalization condition, 

upup = -2, (A 5) resulting from (A 2). 
In  terms of the foregoing decomposition the relativistic perfect fluid is postulated 

to have an energy-momentum tensor given directly by 

TP" = pupu" + Pyp", (A 6) 

where Y is the pressure, as before, and where p is interpretable as the local mass- 
energy density in the fluid rest frame. When the only non-gravitational external 
force is  electromagnetic, the dynamic equations of motion take the form 

V,T; = FP,j", (A 8) 
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Fpu = 2a,,AU,, 
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where the electromagnetic field tensor is the exterior derivative of the 4-potential 
1-form, i.e. 

the gravitational forces (if any) being taken into account automatipally by taking the 
covariant differentiation operation indicated by V to be defined in terms of the 
(possibly curved) Riemannian connection associated with the metric (A 1). 

The full system of differential equations of motion of the fluid consists of the 
pseudo-conservation law (A 8) (it will only be a strict conservation law in the special 
relativistic Aat space-time case, i.e. when no gravitational effects are taken into 
account) together with the (true) conservation or creation laws (2.2) for the 
independent conserved constituents (including the entropy if thermal effects are 
relevant). To complete the specification of the system, these differential equations 
must of course be supplemented by the necessary algebraic relations, namely the 
equation of state, which may be thought of as specifying the mass-energy density p 
as a function of the independent (proper) constituent number densities nx, and 
finally the expressions for the creation rates T~ appearing in (2.2) as a result of any 
(chemical, nuclear, or other) reactions that may be relevant. Except for the index 
value X = 0 say, corresponding to the entropy, the rates rx  may be expressed in 
terms of the rates reel say (per unit proper volume) of the various particular reactions 
that may be going on (where [C] is an index labelling the distinct reactions involved) 
by an expression of the form 

where the coefficients Nyl are integer-valued constants representing the number of 
particles of the corresponding particle created (or, for negative values, destroyed) in 
the reaction concerned. The reaction rates rlc, are supposed to be specified in terms 
of the constituent densities, including the entropy, in such a way as to ensure that 
the latter has a non-negative creation rate, ro 2 0, as determined, not by a direct 
relation of the form (A 10) but by the consistency condition to be given below. 

Since consistency with the normalization condition (A 5 )  requires that only three 
of the four components of the dynamic equation ( A 8 )  can be independent, the 
functional dependence of the pressure, P ,  is determined in terms of that for p by the 
requirement the intrinsic energy conservation law 

(A 9) 

rx  = rIcl, (A 10) 

uPV,T," = 0, 

(obtained as the projection of (A 8) along the flow, taking account of the restriction 
(2.4) expressing the absence of electric conductivity) should be satisfied as an 
identity. The explicit form of this required identity is obtained by substitution of 
(A 6) as 

Introducing what may be described as the relativistic chemical potentials pX (which 
we shall see to be alternatively interpretable as effective particle mass parameters) 
by the partial variation formula 

(p+c-2P)v~u~+u"v ,p  = 0. (A 12) 

Sp = px Sn,, 

and using the separate constituent creation or conservation laws (2.2) one sees that 
(A 12) may be rewritten as 

( p - / - ~ - ~ P - p ~ n ~ )  Vuuu = pxr,. 

In order for this to hold as an identity, the net chemical potential energy release 
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(including the otherwise unspecified entropy contribution, para, where po is the 
thermodynamic temperature 0) must vanish separately, 

pxrx = 0, (A 15) 

P = ( n x p x - p ) c 2 ,  (A 16) 

(A 17) 

For the purpose of comparison with analogous Newtonian formulae, it is a very 
common practice even in a relativistic context to introduce the concept of a constant 
('rest') mass per particle, mx say, for each constituent. In  terms of such constants, 
one can if one wishes define the relativistic generalization of the Newtonian chemical 
potentials xx (as introduced by (4.6)) by the decomposition 

and the equation of state for P must be specified in terms of that for p by 

for which the corresponding partial variation formula is 

6P = c2nx 6px. 

p,X = mx -+ C - ~ X X ,  (A 18) 

thereby ensuring that (4.8) will still be obeyed even in the relativistic case. The 
corresponding generalization of the energy density 6 ,  constructed so as to preserve 
(4.6) and (4.7) also in the relativistic case must then be taken to be given by the 
decomposition 

p = n, mx + C - ~ E .  

As far as the intrinsic mathematical structure of the theory is concerned however, 
such a decomposition is an unnecessary complication, the choice of the mass 
constants mx being quite arbitrary, since any redefinition by adjustments of the 
form 

(where the Cx are freely chosen constants) may be allowed for by corresponding 
chemical potential gauge adjustments of the form that has already been specified by 
(4.13) and (4.14). Such recalibrations of the xx and of E have no effect on the 
relativistically well-defined (gauge independent) quantities px and p as introduced 
by (A 13) and (A 6). The arbitrariness may of course be somewhat restricted if, as will 
usually be the case, one also desires to recover the Newtonian chemical-energy- 
balance condition (4.9) from its relativistic analogue (A 15): for this purpose the 
quantities mx will have to satisfy restrictions of the same form as the Newtonian 
mass conservation law, i.e. 

mXrx = 0. 

Subject to the convention that a zero (rest) mass value be attributed to the 
entropy, 

the restriction (4.9) can be replaced by the more explicit requirements 

(A 19) 

mx + mx - c-~C,, (A 20) 

(A 21) 

m0 = 0, (A 22)  

m"Nsy"l= 0 (A 23) 
which will then be well defined despite the fact that the entropy coefficients Nhcl 
are in general indeterminate. The restrictions (A 21) will guarantee a resulting 
conservation relation that is formally the same as the Newtonian mass conservation 

(A 24) 
law (4.10), or in other words 

V,(mxn, u') = 0. 

(The restrictions (A 21) are thus effectively equivalent to the condition (5.5) for 
admissibility of the mx as a possible selection for the reference-number-per-particle 
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coeficients N X  specifying a particular choice, mXnx, for the reference number 
density n.) The preservation of the restrictions (A 21) evidently entails the 
corresponding limitation 

on the freedom of choice of the constants Cx appearing in (A 19). 
(From a physical point of view, although the meaning of 'rest mass' may be quite 

unambiguous for an isolated individual particle, the notion of the 'rest mass per 
particle' in a fluid is essentially subjective. It is usually supposed to mean the mass 
that would remain if all 'available' energy were removed. The physical ambiguity 
concerns the different kinds of physical process, e.g. atomic, nuclear, or GUT 
reactions, that might be taken into account in a particular physical context in 
deciding what is to be considered as available in practice. Thus to give a precise 
meaning to the commonly occurring expression 'rest mass per baryon ', legitimate 
alternative choices would be the mass of a neutral hydrogen atom, or, allowing for 
ionization processes, the mass of a proton, or, allowing for nuclear reactions, & of the 
mass of an ordinary iron nucleus. In  a general relativistic context in which black hole 
formation by gravitational collapse may be envisaged, all the energy may in 
principle be considered to be available, so that there is a respectable physical 
justification for what is in any case the most convenient choice for many general 
mathematical purposes, namely to set all the mass parameters mx simply to zero, 
and then to forget about them.) 

The important role that was played by the constant mass parameters mx in 
Newtonian theory, is taken over instead in relativistic theory by the variable 
relativistic chemical potentials, p X ,  whose significance as effective masses has long 
been recognized by many authors (see e.g. Thorne 1967 or Misner et al. 1973). What 
we wish to emphasize more particularly in the present approach is the importance of 
the corresponding dynamical 4-momentum 1 -forms, as defined by 

P, - P  u p .  

Variation of the resulting expression, in terms of the 4-momenta, for the relativistic 
chemical potentials, 

leads (cf. the variation formulae in Schutz & Sorkin 1977) to the relativistic analogue 
of the expression (4.16) giving the variation of these potentials in terms of the 
variations of the momenta, and also of conceivable gravitational variations of the 
external space-time background, in the form 

C X r x  = O (A 25) 

(A 26) 

pxc2 = -upp,x, (A 271 

x -  x 

c28,X = - u p  8pf + ~p~u~u"Gg,,. (A 28) 
I n  order to obtain the required standard form of the equations of motion we now 

introduce the appropriate canonical 4-momenta (differing from the dynamic 4- 
momenta only when an electromagnetic field is present) by a relation of the usual 

(A 29) 
form : 

which implies that  the corresponding Lagrangian scalars (as specified by (2.7)) will 

(A 30) 
be given by 

It ,is then straightforward to verify that the independent equations remaining from 
(A 8) (after (A 16) has been used to ensure that (A 12) is satisfied as an identity), 
namely the orthogonally projected part consisting of the acceleration equations 

np" = pp" + eXA,. 

A X  = - , U ~ C - ~  + eXuPA,. 

(p  + c-ZP) U"VC up + y; v, P = 2v,, A,,j", (A 31) 
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can be rewritten in the desired form (2.5),  i.e. we obtain as a final result the simple 
standard expression n; V,g7cx,, = 0. (A 32) 

To obtain the relativistic analogue of the pressure variation formula (4.27), all we 
need to do i s  to substitute (A 28) in (A 17), which leads to a result expressible as 

SP = - n$Snf +jf’SA, + nXuSgpgr (A 33) 

which (as in the Newtonian case) reduces to the common form (2.3) on which the 
standard variation formula (7.10) is based, when the gravitational space-time 
background is held fixed. 
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